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SUMMARY

MPDATA is a �exible and computationally e�cient methodology that has been applied to advection,
remapping, and full �uid solvers. In this paper, we extend the fundamental concept, iterated upwind
compensation of error, to incorporate a new degree of freedom—that of gauge transformations—with the
goal of constructing a monotonicity preserving option for MPDATA. We further augment this scheme
by adapting the idea of summing the recursive relations to improve the overall accuracy. This process
leads to a theoretical connection of this MPDATA scheme to �ux-limited algorithms. Published in 2005
by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The multidimensional positive de�nite advection transport algorithm (MPDATA) was intro-
duced by Smolarkiewicz [1] as a �exible and computationally e�cient algorithm for mod-
elling advection. Through more than twenty years, its use has been extended to nonoscillatory
interpolation [2], as a full �uid solver [3], and recently as a remapper for arbitrary Lagrange–
Eulerian codes [4, 5]. Most recently, MPDATA has been successfully used as a basis for
implicit turbulence modelling [6, 7]. A review of MPDATA and its many options can be
found in Reference [8].
The basic idea underlying all MPDATA applications is the compensation of error by

iterated upwind approximation. Di�usion-like truncation errors are rewritten in the form of an
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1194 L. G. MARGOLIN AND M. SHASHKOV

advection term, and compensated in a second upwind step. The velocity of this second step
results from a modi�ed equation analysis of the �rst-order donor-cell algorithm; it is termed
an antidi�usive velocity, or a pseudo velocity as it has no physical interpretation. The form
of the pseudo velocity is constrained by the requirements of computational stability, but is
not unique, and many MPDATA options are created through modi�cation of this term.
The goal of this paper is to describe a new degree of freedom for the form of the pseudo

velocity, through the introduction of a gauge transformation in the advected �eld. In Section 2,
we will brie�y review the basic ideas of MPDATA. In Section 3, we introduce the gauge
transformation. We describe the modi�ed ‘gauge’ MPDATA algorithm in Section 4 and show
that it preserves monotonicity, but is more di�usive than the basic algorithm. In Section 5, we
adapt the idea of analytic recursion to the gauge algorithm. This modi�cation improves the
accuracy of the overall algorithm. At the same time, it demonstrates a theoretical connection
between MPDATA and �ux-limited schemes, which is further discussed in Section 6. We
conclude the paper in Section 7 with some ideas for exploiting our theoretical framework to
treat problems of advection and remapping on multidimensional, unstructured grids.
Throughout the paper, we illustrate our results with examples of constant velocity transport.

However, all statements regarding donor cell and basic MPDATA have been shown to apply
for the case of variable velocity [8]. Further, all new proofs in this paper concerning the
preservation of monotonicity, both for the gauge algorithm and for the �ux-limited algorithm,
are derived for the case of spatially variable velocity.

2. A NONLINEAR APPROXIMATION OF UNITY

MPDATA belongs to the general class of Lax–Wendro� methods, where the second-order
error of donor cell advection is estimated by means of modi�ed equation analysis (MEA; see
Reference [9]) and compensated. Consider the one-dimensional linear transport equation

 t = − (u  ) x (1)

The donor cell approximation to (1) is

 n+1
j −  n

j = − F( n
j ;  

n
j+1; uj+(1=2)) + F( n

j−1;  
n
j ; uj−(1=2)) (2)

Here, superscripts indicate the discretized time level, and integer subscripts indicate the centres
of the computational cells. �t is the computational time step and �x is the cell size. The
�ux function is de�ned as

F( j−1;  j; u)≡  j−1

(
C + |C|
2

)
+  j

(
C − |C|
2

)
(3)

where C ≡ u�t=�x is the dimensionless Courant number.
Let us now assume (for the moment) that u is constant in space. A straightforward MEA

shows that the donor cell algorithm more accurately approximates the advection–di�usion
equation

 t = − (u  ) x + K xx (4)

where the di�usion coe�cient K ≡ (�x2=2�t)(|C| − C2). Here, the model PDE has been
used to rewrite  tt = u2 xx. More generally, we use the modi�ed equation to eliminate the
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GAUGE TRANSFORMATIONS, LIMITERS AND MONOTONICITY 1195

time derivatives for the sake of deriving higher-order algorithms, see, e.g. Reference [10]. To
ensure a computationally stable algorithm, we require K¿0; then it is necessary that |C|61,
which is the well known Courant–Friedrichs–Lewy (CFL) condition on the time step.
From this brief discussion, we see that donor cell is a �rst-order accurate algorithm—i.e.

truncation terms �rst appear linear in the spatial scale �x or the computational time step �t.
Further, donor cell is sign preserving. For example, if u¿0, we can rewrite (2) in the form

 n+1
j =C n

j−1 + (1− C) n
j (5)

i.e.  n
j ¿0∀ j and C ∈ [0; 1] →  n+1

j ¿0∀ j. We remark that in the case of constant velocity,
donor cell has the stronger property of preserving monotonicity—e.g. if

 n
j−1¡ n

j ¡ n
j+1; →  n+1

j−1¡ n+1
j ¡ n+1

j+1

However, when u varies in space arbitrarily, donor cell is only sign-preserving.
To improve the accuracy of the donor cell algorithm, one must compensate the second-order

error. A straightforward linear approximation

K  xx ≈ K
�x2

( j+1 − 2 j +  j−1) (6)

leads to the classic Lax–Wendro� algorithm, which is oscillatory and does not preserve sign
of the advected �eld. Smolarkiewicz’ idea [1] is to use the properties of donor cell in the
approximation by writing the di�usive error in the form of an advective �ux

K xx=
@
@x

(
K
 

@ 
@x

 
)
=

@
@x
(v ) (7)

where the pseudo velocity v≡ (K= ) x. Numerically, we write

vj+(1=2) =
K
�x

 j+1 −  j

 j+1 +  j
(8)

Then one can compensate the truncation in a second donor cell pass

 n+1
j −  ̃

n
j = − F( n

j ;  
n
j+1; vj+(1=2)) + F

(
 n
j−1;  

n
j ; vj−(1=2)

)
(9)

Here,  ̃ is the result of the �rst, donor cell pass as in (5)

 ̃ j=C n
j−1 + (1− C) n

j

Writing out (9) in detail, one sees that we have approximated the analytic value of unity
at the node j − 1

2 , e.g. for u¿0

1=
 
 

≈ 2 j−1
 j +  j−1

(10)

This nonlinear approximation is the key to the nonoscillatory behaviour of MPDATA; see,
for example, the discussion of Godunov’s theorem in Reference [11]. We have chosen to
write the �ux functions in terms of  n rather than  ̃ . The two choices are equivalent to the
second-order of accuracy, but may require di�erent time step restrictions to ensure positivity.
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1196 L. G. MARGOLIN AND M. SHASHKOV

Note that when the advected �eld  is everywhere positive, or negative, |v|6|u|: Thus the
stability of the donor cell pass guarantees the stability of the second pass.
Let us now make the following observations. First, the MPDATA algorithm (2) and (9)

is applicable for the more general case that the physical velocity u is not constant in space;
the constant K will then become variable and a more restrictive time step criterion may be
required. Second, we note that the pseudo velocity v is not constant in space, even when
the physical velocity is constant. Thus the MPDATA algorithm (2) and (9) is second-order
accurate, sign preserving, but not monotonicity preserving. Third, we note that if the �eld  
is not uniformly of one sign, then the stability of the algorithm is lost.
The last two observations are critical if one intends to apply the algorithm to the momentum

equation. Several modi�cations are proposed in Reference [8] to ensure the necessary bounded-
ness of the pseudo velocity for variably signed �elds. However, it has been found that while
sign preservation is su�cient for many applications, the stronger property of monotonicity
preservation is sometimes essential. This is particularly true in the case of the momentum
equation. At present, our strategy has been to augment MPDATA with a specially tailored
�ux corrected transport procedure [12]. This is an e�ective strategy to ensure preservation of
monotonicity, but does signi�cantly complicate the computational procedure and also changes
somewhat the character of MPDATA. In the next section, we present an idea for an alternative
strategy that we believe retains more of the philosophical approach of MPDATA.

3. THE GAUGE TRANSFORMATION

There is a close connection between the preservation of sign and the preservation of
monotonicity. This can be illustrated by means of the following simple example. Consider the
transport of a square pulse by a constant velocity through a nonzero (constant) background.
The MPDATA result, shown in the left panel of Figure 1 after 40 time steps at Courant
number C=0:5, shows unphysical oscillations, both at the foot and the top of the pulse.

Basic MPDATA with nonzero background Basic MPDATA, with zero background

Figure 1. The left panel shows a square pulse, transported with a constant velocity through
a nonzero background by basic MPDATA. Note the undershoots at the foot of the pulse
and the overshoots at the top of the pulse. The right panel shows the same problem, but
with no constant background. The undershoots are gone, but the overshoots remain.
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GAUGE TRANSFORMATIONS, LIMITERS AND MONOTONICITY 1197

Consider next what happens as the value of the constant background decreases—the magnitude
of the oscillations as the foot of the pulse decrease, and ultimately vanish as the background
vanishes. This is shown in the right panel of Figure 1.
This behaviour should be seen as somewhat surprising; the problem is linear and homoge-

neous, and should be insensitive to the background. The actual behaviour is the result of the
nonlinearity of MPDATA itself, as described in the previous section, and speci�cally in the
nonlinear approximation (10). One could write this approximation more generally at the node
j − 1

2 in the form

1=
 −  G

 −  G
≈ 2( j−1 −  G)

 j +  j−1 − 2 G
(11)

where  G is any constant. Now let us return to the simple problem of the beginning of the
section, and set  G equal to the background value. The result (not shown) is identical to
that of the right panel of Figure 1. This illustrates that the implicit choice  G=0 in (10) is
what makes the value  =0 special in the basic MPDATA algorithm. We refer to (11) as
the global gauge transformation.
From an implementation point of view, the gauge transformation alters both the form of

the pseudo velocity and of the �ux function. Now

vG
j−(1=2) =

K
�x

 j −  j−1
 j +  j−1 − 2 G

(12)

and the new �ux function

F( j−1;  j; C)≡ ( j−1 −  G)
(
C + |C|
2

)
+ ( j −  G)

(
C − |C|
2

)
(13)

where C ≡ v G
j−(1=2) �t=�x.

More generally, we can choose  G as a function of both space and time without altering
the consistency of the approximation with the model equation. This would allow us to set the
zero value of the �eld locally; we refer to this as the local gauge transformation. Note that
from (12), the gauge value  G lives at the node.
There is one more idea to discuss in this section. Referring back to Figure 1, right panel, we

see that changing the background value has eliminated the oscillations at the foot of the pulse,
but has not a�ected the oscillations at the top of the pulse. To eliminate these oscillations,
one might �rst multiply the entire �eld by −1, use the negative of the maximum pulse height
as the gauge, transport the �eld, and then restore the original �eld by again multiplying by
−1. Of course, this procedure will not mitigate the oscillations at the foot of the pulse.
The point is that, in general, there are two gauge values that must be considered, a minimum

value and a maximum value. This corresponds to the two bounds that must be enforced to
ensure the preservation of monotonicity. We will refer to these as  minj+(1=2) and  maxj+(1=2). We
note that the gauge, like the new pseudo velocity which will depend on the gauge, lives at
the cell vertices rather than cell centres. In the next section, we will justify how these values
are chosen and used to preserve monotonicity.
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1198 L. G. MARGOLIN AND M. SHASHKOV

4. MONOTONICITY

Because the choice of gauge is local, we expect it should depend only on local data. We will
de�ne

 minj+(1=2) ≡ min( j−1;  j;  j+1;  j+2) (14)

and

 maxj+(1=2) ≡ max( j−1;  j;  j+1;  j+2) (15)

and demonstrate that these choices are e�ective. Recall that the gauge is associated with the
vertex, not the cell centre. We refer to the algorithm de�ned by (12) and (13) with the above
choices of gauges, as the basic gauge algorithm.

4.1. Constant velocity case

Let us consider the case of a monotonically increasing distribution

 j−16 j6 j+16 j+2

where all time levels not explicitly stated are assumed to be at level n. To begin, we will
also assume that the velocity is positive and constant in space, u¿0. Let us �rst show that

 n+1
j ¿ j−1 (16)

Explicitly,

 n+1
j =(1− C) j + C j−1 + Aminj−(1=2) − Aminj+(1=2) (17)

where the antidi�usive �uxes associated with the minimum gauge

Aminj−(1=2) =
K�t
�x2

[
 j −  j−1

0:5 ( j +  j−1)−  minj−(1=2)

]
[ ̃ j−1 −  minj−(1=2)] (18)

and

Aminj+(1=2) =
K�t
�x2

[
 j+1 −  j

0:5 ( j+1 +  j)−  minj+(1=2)

]
[ ̃ j −  minj+(1=2)]

=
K�t
�x2

[
 j+1 −  j

0:5 ( j+1 +  j)−  minj+(1=2)

]
[(1− C) j + C j−1 −  minj+(1=2)] (19)

Note that in this case, all antidi�usive �uxes are positive. Thus, to prove the inequality
(16), we can ignore Aminj−(1=2). Further,  

min
j+(1=2) =  j−1. Substituting into (17) and rearranging,

we derive

 n+1
j −  j−1¿(1− C)( j −  j−1)

[
1− 2K�t

�x2

(
Rj

Rj + 2

)]
(20)
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Here, the cell-centred quantity Rj ≡ ( j+1 −  j)=( j −  j−1). This quantity is typically used in
�ux-limiting schemes, see Reference [13]. Finally, we note that, in the case of monotonic
distributions, R¿0 and always 2K�t=�x261. Thus, all the factors on the right-hand side of
(20) are positive and the inequality is proved.
A similar proof is easily constructed to show that  n+1

j+16 j+2, if the antidi�usive �uxes are
constructed with the maximum gauge. Proofs of the satisfaction of bounds for the additional
cases where the (constant) velocity is negative, and=or where the distribution is monotonically
decreasing, are also easily constructed and will not be detailed here.

4.2. Spatially variable velocity

The situation is a little more subtle when the velocity �eld is not constant in space. In this
case, it is not clear whether the continuous solution, i.e. to (1), will be monotone. From the
numerical point of view, the donor cell solution will not necessarily preserve monotonicity;
then the antidi�usive �uxes may not have the same sign as the donor cell �uxes, which was
an essential element of the proof above. To summarize, the numerical solution can only be
guaranteed to preserve monotonicity if the donor cell scheme does. Since it is usually not
possible to determine whether the continuous solution should be monotone in the context of
a numerical simulation, we make the practical choice of asserting that monotonicity should
be preserved by the gauge scheme whenever it has been preserved by the donor cell scheme.
We note that this choice is equivalent to the de�nition of monotonicity preservation in the
�ux corrected transport schemes (FCT, [14]), where oscillations in the high-order scheme are
only deemed unphysical when they are not found in the low-order reference scheme.
Let us now return to the example above allowing the dimensionless velocity to vary in

space, which we will now write as Cj+(1=2). We assume that the donor cell solution preserves
monotonicity

 ̃ j −  minj+(1=2) =  j(1− Cj−(1=2))−  j−1(1− Cj−(3=2))¿0

which implies Aminj−(1=2)¿0. Then we have

 n+1
j−1 −  j−1¿ j(1− Cj−(1=2))−  j−1(1− Cj−(3=2))

[
1− 2K�t

�x2

(
Rj

Rj + 2

)]
¿0 (21)

That is, when the donor cell solution preserves monotonicity, then the gauge MPDATA does
also.
It is easy to verify that, when the spatial distribution is not monotone, i.e. there is a

local maximum or minimum, then the antidi�usive �uxes vanish and the donor cell solution
is used. There are theoretical ways to decide whether the �ux associated with the minimum
gauge Aminj+(1=2) or that associated with the maximum gauge Amaxj+(1=2) should be used, for example
based on the second derivative (curvature) of the �eld. However, as a practical matter, one
should always choose the �ux with the smaller magnitude.
The result of a square wave propagation (same problem as in the left panel of Figure 1)

using the basic gauge MPDATA algorithm is shown in the left panel of Figure 2. The pulse
is now monotone; however the edges of the pulse are less steep. That is, the gauge MPDATA
algorithm is more di�usive than basic MPDATA. This observation is quanti�ed in Table I.
In the next section, we discuss how one might improve this result. This will lead to the main
theoretical result of this paper, a relation between the gauge transformation and �ux limiting.
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Gauge MPDATA with nonzero background Basic MPDATA, IORD = 40

Figure 2. The left panel shows a square pulse, transported with a constant velocity through a constant
background by gauge MPDATA. Note the monotone pro�le. The right panel shows the same problem,
but with a large number of iterative corrections de�ned by the parameter IORD=40, in basic MPDATA.
Note that the solution is now more accurate and symmetric than that shown in the left panel of Figure 1,

but still does not preserve monotonicity.

Table I. The errors in L1 and L2 norms for the various
algorithms simulating the problem of Figure 1.

Algorithm L1 error L2 error

Donor cell 5.14 1.240
Basic MPDATA, IORD=2 2.96 0.963
Basic MPDATA, IORD=40 2.43 0.848
Gauge MPDATA 4.73 1.190
Flux-limited 2.34 0.824

5. RELATION OF THE GAUGE TRANSFORMATION TO FLUX LIMITING

5.1. Recursion

It was noted in the original MPDATA Reference [1] that the error after the second pass can
also be analysed, and can be compensated in a similar process. Indeed, this process can be
repeated inde�nitely. Each pass further reduces the error, but does not increase the order of
the algorithm beyond second-order. The process is described, e.g. in Reference [8], by the
index IORD, where IORD=1 is donor cell, IORD=2 is the basic MPDATA algorithm, etc.
In Reference [10], an interesting extension to the basic MPDATA algorithm is described.

E�ectively, the results of an in�nite number of corrective passes are estimated analytically,
and applied in a single corrective step. The details of this process are di�erent for the gauge
algorithm, but the overall idea carries over readily.
Although one can readily do a MEA, there is an even simpler way to derive the appropriate

recursion relation of the gauge algorithm. Consider the case of monotonically increasing �eld

 j−16 j6 j+1

positive velocity u¿0, and the minimum gauge. We will focus only on the interface j + 1
2 ,

and so it is not necessary to assume that u is constant in space. In this case, we have
 minj+(1=2) =  j−1. Employing the gauge MPDATA algorithm (17), the (dimensionless)
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antidi�usive �ux associated with the minimum gauge for the �rst corrective pass is

Aminj+(1=2) =
Kj+(1=2)�t
�x2

A ( ̃ j −  j−1)=V (1)
j+(1=2)( ̃ j −  j−1) (22)

where

A≡  j+1 −  j

0:5( j+1 +  j)−  j−1
; V (1)

j+(1=2) ≡
Kj+(1=2)�t
�x2

A (23)

Rather than go to the continuous PDE, let us note that a third-order accurate representation
of the continuous antidi�usive �ux is the Lax–Wendro� corrective �ux (i.e. when A → 1)

ALWj+(1=2) ≈ Kj+(1=2)�t
�x2

( j+1 −  j) (24)

Therefore, the error in our approximation after one corrective step IORD=2 is

error(1)j+(1=2) =ALWj+(1=2) − Aminj+(1=2) =
K j+(1=2)�t
�x2

( j+1 −  j)
[
1− A

Rj

]
(25)

where

Rj ≡  j+1 −  j

 ̃ j −  j−1

Note that R di�ers from R de�ned below (20) because of the di�erent time levels of the
various terms. Thus the next corrective step would set

V (2)
j+(1=2) =

(
1− A

Rj

)
V (1)
j+(1=2) (26)

Following this chain of reasoning, it is easy to show that the recursive relation we are looking
for is

V (k)
j+(1=2) =

(
1− A

Rj

)k−1
V (1)
j+(1=2) (27)

where V (1)
j+(1=2) is de�ned in (22).

The idea of the recursion then is to calculate the sum of all the terms

VT ≡
∞∑

IORD=2
V (IORD) =

Kj+(1=2)A

1−
(
1− A

Rj

) =Kj+(1=2)Rj (28)

This leads to the �nal result

Aminj+(1=2) =VT  ̃ j −  j−1
�x

=
Kj+(1=2)�t
�x2

( j+1 −  j)=ALWj+(1=2) (29)

that is, the result of analytically summing all the antidi�usive corrections is the
Lax–Wendro� corrective �ux. On the one hand, this is the expected result since each cor-
rection pass reduces the error. On the other hand, it appears that we have used a succession
of monotonicity preserving passes, and ended with a nonmonotonic result.
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1202 L. G. MARGOLIN AND M. SHASHKOV

The resolution of this apparent paradox is readily understood. In performing the sum, we
must insure that the test for monotonicity, e.g. Equation (20), remains valid. Allowing for
the possibility that we would want to limit the sum VT by a velocity limiter �, the condition
that we must enforce is

 n+1
j −  j−1¿(1− C)( j −  j−1)

[
1− CRj �

2

]
¿0 (30)

This leads to the following form for the velocity limiter:

�(R;C)= max
[
0;min

(
2

RjC
; 1

)]
(31)

5.2. The connection to �ux limiting

A limiter for the pseudo velocity is interesting, and will be given a physical interpretation
in the next section. However, it is easy to reformulate our results in more conventional
terms. Returning to the example of Section 4—i.e. monotonically increasing �eld and constant
positive velocity, let us exploit our result that the recursion relations lead to the Lax–Wendro�
form, to write

 n+1
j =(1− C) j + C j + Lj−(1=2) − Lj+(1=2) (32)

where

Lj+(1=2) ≡ALWj+(1=2)� j+(1=2) =
K�t
�x2

� j+(1=2)( j+1 −  j) (33)

In the equation above, � is a �ux-limiter, i.e. a function that limits the Lax–Wendro�
correction to the donor cell �ux to insure the preservation of monotonicity, see Reference
[13]. Then the condition that  n+1

j ¿ j−1 leads directly to the result

� j+(1=2)6
2

RjC

Further, the condition that  n+1
j+16 j+2 leads directly to the result

� j+(1=2)6
2(Rj+1 + C)
C(1− C)

It is now easy to verify that in the rest of the cases, where one considers monotonically
decreasing �ow, and=or negative velocities, the same two conditions appear, if one replaces
C → |C| . As noted previously, it is necessary to enforce the more restrictive of these condi-
tions. Further, we will limit �61. It is possible to allow larger values, see, e.g. Reference [13]
where a maximum value of 2 is allowed. However, the Lax–Wendro� �ux is the most ac-
curate (to second-order) and there seems to be no reason to allow a larger �ux. Setting an
upper limit of 1 is also consistent with Sweby’s constraint that R=1 ⇒ �=1: Finally, we
must require �¿0 to reproduce the result that in nonmonotone regions R¡0, we use the
donor cell solution. Putting all this together leads to our �nal result for the �ux limiter

� j+(1=2) = max
[
0;min

(
2

Rj |C| ;
2(Rj+1 + |C|)
|C|(1− |C|) ; 1

)]
(34)
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Flux Limiter with nonzero background Comparison of schemes C = 0.5

Figure 3. The left panel shows the same calculation as the left panel in Figure 1, but using
the �ux limiter. The solution remains monotone, but is less di�usive. The right panel shows

an overlay to facilitate comparison of the various advection methods.

The result from a simulation of the square wave pulse using the �ux-limiter algorithm
(same problem as in the left panel of Figure 1) is shown in the left panel of Figure 3. Note
the improvement over the gauge algorithm, in terms of steepness of the edges. However,
there is now a pronounced lack of symmetry in the pulse. This is attributable to higher-
order, dispersive errors, see discussion in Reference [10]. A composite plot of the solutions
of transporting a square pulse through a nonzero background using the basic MPDATA, the
gauge MPDATA and the �ux-limiter algorithms is shown in the right panel of Figure 3.

6. DISCUSSION POINTS

(1) We begin our discussion by noting an interesting interpretation of our results in summing
the recursion relation. Using (28) and (31), we have

C + VT �6C + C(1− C)=1 (35)

That is, monotonicity is the result of limiting the ‘total’ Courant number C + VT � in the
same way that limiting the Courant number itself ensures stability.
(2) We note that the form of the �ux-limiter (34) is more general than those reported by

Sweby [13] in that it depends on the Courant number C, and that it depends on both the
‘upstream’ and the ‘downstream’ ratios Rj and Rj+1.
(3) All the simulation results shown in this paper have used a Courant number C=0:5.

We have explored all methods over a range of values C ∈ [0:1; 0:8]. In general, the larger the
Courant number, the better the results. However, the qualitative results that we have reported
are unchanged.
(4) The errors in the discrete L1 norm

E1 =
∑

j∈mesh
| j −  exact|
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and in the discrete L2 norm

E2 =
√ ∑

j∈mesh
( j −  exact)2

are shown in Table I. Here  exact is the square pulse transported downstream, but otherwise
unchanged. All MPDATA schemes are more accurate than the donor cell. Note that the gauge
algorithm, though preserving monotonicity, is less accurate than basic MPDATA.
(5) It is interesting to consider the behaviour of the basic and gauge algorithms if more

explicit recursions are used—i.e. if IORD → ∞. In the case of the basic MPDATA, the
iterative process leads to reduction of the error. However, the asymptotic limit is quickly
reached, by IORD equals 3 or 4. A calculation of the square wave propagation is shown in
the right panel of Figure 2. The transported pulse is much more symmetric than the result
shown in the left panel of this �gure, but remains oscillatory.
Increasing IORD is more problematic in the gauge algorithm. For one thing, the reduction

of error is much slower than for the basic algorithm. However, it is not possible to recover the
�ux-limited result of Figure 3 (left panel) by simply increasing IORD. Whereas the stability
of the donor step in the basic algorithm guarantees the stability of the corrective steps, the
stability of the corrective steps of the gauge algorithm is not guaranteed, but requires limiting
of the pseudo velocity. This was e�ectively demonstrated in Section 5.1. If the velocity is
limited, then the corresponding asymptotic result is the �ux-limited result. Note in Table I that
the �ux-limited result is more accurate than the basic MPDATA result with many iterations.
(6) Returning to Equation (11), we can also consider the limit  G → −∞. In this limit, the

gauge algorithm becomes equivalent to a two-step Lax–Wendro� method. We refer to this
limit, when combined with FCT [12], as the ‘in�nite gauge’ option.

7. CONCLUSION

We began this paper by summarizing the fundamental idea upon which MPDATA is based—
that of upwind compensation of di�usive truncation error. We described a simple gener-
alization of the basic algorithm that transformed the basic, sign-preserving method to a
monotonicity-preserving method. We then derived a theoretical connection between our new
gauge algorithm and more conventional approaches to monotonicity-preserving algorithms
based on �ux-limiting.
The gauge transformation represents a potentially valuable addition to the available options

for MPDATA. However, more work remains to extend it to multiple dimensional simulations,
and to integrate it with other MPDATA options. We believe that the theoretical connection
that we have established is also important. There is, of course, a large literature on �ux-
limiters, which may lead to new improvements in MPDATA. In addition, we see this �ow
of ideas going in both directions. MPDATA has several advantageous features: it is truly
multidimensional, i.e. unsplit spatially; it can be extended to irregular grids and to unstructured
grids [15]. The capability to deal with such grids is particularly important for its use in
remapping, see Reference [4].
We conclude this paper with two speci�c examples that illustrate how the connection to

MPDATA may impact �ux limited schemes. First, we note that the quantities Rj, which play
an essential role in the �ux-limiter form (34), are a one-dimensional idea. The extension
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to multiple dimensions on a structured grid requires some form of direction splitting. The
further extension to unstructured grids is problematic. However, in the context of the gauge
algorithm, it became clear that the  terms in R not directly adjacent to the interface arise
from the gauge condition and not from estimates of the gradient; this idea is readily extended
to multiple dimensions and unstructured grids, since the gauge can simply be de�ned in terms
of the next nearest neighbours of an interface.
A second direction concerns relaxing the strict imposition of monotonicity. The value of

nonoscillatory algorithms is well recognized in the computational �uid dynamics (CFD) com-
munity. Basic MPDATA is, strictly speaking, nonoscillatory only in the neighbourhood of
zero although it does have the important property of ensuring nonlinear stability. Our focus
in this paper has been the construction of an MPDATA scheme that is always nonoscilla-
tory. However, there has been an e�ort in the CFD community to relax these conditions, see
References [16, 17]. A physical motivation for this has been suggested in Reference [6], where
the connection between the mathematical condition of monotonicity preservation and the phys-
ical constraints of the second law of thermodynamics is explored. In that paper, it is shown
that strict monotonicity preservation is a su�cient, but not a necessary condition for the sec-
ond law, and it is suggested that relaxing this constraint would better represent the physical
process of backscatter in turbulent �ows. As a practical matter, relaxing monotonicity in the
gauge algorithm could be easily achieved by widening the neighbourhood over which the min
and max gauge values are chosen.

8. HISTORICAL NOTE

The concept of applying gauge transformations to advection algorithms was described in an
earlier publication in the context of relaxing monotonicity constraints in �ux-limited schemes
[17]. However, the idea originated in the framework of MPDATA more than �fteen years ago
[18]. This work, like much research done at Livermore and Los Alamos National Laboratories,
remains unpublished. The LLNL report is now available on the web; however, those early
results are entirely reproduced in this paper.
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